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LEITER TO THE EDITOR 

Quantum groups constructed from the non-standard braid group 
representations in the Faddeev-Reshetikhin-Takhtajan 
approach. I1 

- 

Mo-Lin Get$ and A C T  Wut  I/ 
t Institute for Theoretical Physics, State University of New York at Stony Brook, Stony 
Brook, NY 11794-3840, USA 

Received 11 March 1992 

Abstract. From the non-standard braid group representation for the fundamental rep- 
resentation of sl,(n), we obtain the corresponding algebra in the Faddeev-Reshetikhin- 
Takhtajan approach. The main features of the algebra consist of (X:) ‘=O, k =  
I ,  2 , .  . . , n - I, which obliterates half of the generalized Sene relations: an unuswal scalar 
product normalization of the underlying coot vectors, besides the presence of two param- 
eters. one of which is a root of unity. Explicit detail is given far the n = 5 case. An alternative 
interpretation suggests that such non-standard solutions are closely connected with the 
quantum superalgebras. 

In a previous paper [I] ,  we have shown that the quantum group [2-81 constructed, in 
the Faddeev-Reshetikhin-Takhtajan (FRT) approach [5,6], from the non-standard 
braid group representation (BGR) for the spin 1 case of s1,(2) turns out to he the 
modular Hopf algebra [9], namely s1,(2) at A being a root of unity and (X; )””=O.  

In this paper, we extend the analysis to the non-standard BCR for the fundamental 
representation of sl,(n). We treat the n = 5 case in detail, and we discuss the general 
n case. 

Our main observations can be stated as follows. 
(a) The decoupling phenomenon found in the s1,(2) case [l]  (namely the disappear- 

ance of the f parameter in the theory) is only partial for sl,(n) for n > 3. So the general 
algebra contains two parameters: A = w-”’ = (a root of unity) and f. The resulting 
algebra represents a distortion of the usual sl,(n). 

(b) The basic generators X; satisfy (X;) ’=O,  k = 1,2,. . . , n - 1. Such relations 
(absent in the standard cases) obliterate half of the so-called generalized Sene relations 
[IO] stated by Drinfeld [27 and Jimho [3], 
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where a? = Cartan matrix element and the square bracket is the q-analogue of the 
binomial coefficients. 

(c) An altemative interpretation is given in terms of the quantum superalgebra. 
The FRT formalism [S, 6,111 determines the algebraic structure of the Lc operators 

from a given BGR, R, with the following two equations: 

(L*OL*)R=R(L*OL*)  (2) 

(L-O L + ) R  = R (  L+O L-) .  (3) 

Here L* are n x n matrices of the L; operators and R is a known n2 x n2 matrix. A 
standard R gives back the known standard algebra; non-standard R,,, ad alternative 
solutions to BCR, hopefully will generate new algebras [l, 121. 

Next we consider the BGR for the fundamental representation of sl,(5). As a concrete 
example, we consider the n = 5 case, which has sufficiently rich structure to allow an 
immediate generalization to arbitrary n, yet is still tractable. A simpler case s1,(3) 
which we have also studied would be inadequate to shed light on a subtle point on 
the different scales involving (ag) .  See the discussion following equation (36). 

(A) The standard BGR: R here is a 25x25 matrix which consists of nine block 
diagonal entries [3,4]: 

R = [Ai, A,, A,, A,, AsrA,, A,, A,, Ai1 

where A, is an m x m matrix with the following structure: 

/ o  0 0 f \  

(4) 

A,= [;;;;I 0 0 1 0 0 

where p =  1 - f . 2 

The pattern is clear. 

(a) The euen dimensional A,, matrix has f along the skew- 
diagonal and p along the lower main diagonal. All other 
entries are zero. (6) 

(b) The odd dimensional A,,,, matrix has f along the skew- 
diagonal excepf 1 at the centre, and p along the lower main 
diagonal. All other entries are zero. (73 

(B) The non-standard BGR d,, here is only slightly distorted from R [14,15]: 

d ~ s = [ A i ,  A2, Ai, Aa,A>,A,,A;, A,,AiI. (8) 



L+= 

- 

. I K ,  d: .rK;'[*:, ,'?:I rK; 'K; l [g: , [R: . l?: l l  7K;'K;'K-' 1 [x:, - [%.[%. ?:I11 

0 0 K, 72; rK;'[R;, , fz]  
0 K, 72: TK; ' [P: ,  d:] ,K; 'K;~[R:,  [R;, *:I] 

0 0  0 K4 72: 
0 0  0 0 K, 



- 
0 a l  a,+az a,+a,+a, a,+a,+a,+a, 

0 a2 a2+a3 a,+ a,+ a4 
0 013 a3+a4 

0 a 4  I 0 

'L+'+ 

- 

(E) [x:, x;] = 0 I j -  il> 1. 

We discuss this algebra in the next two sections. 

(16) 
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We now consider the implications on the generalized Serre relations. The basic 
question is whether the algebra generated by the non-standard BGR is underconstrained 
or underspecijed if half of the generalized Serre relations (1) are being wiped out by 
(20). Fortunately, the answer is negative. As we shall see, the condition (20) is quite 
adequate as a replacement for the missing pieces. On the other hand, we can still keep 
the other half of the generalized Serre relations (28) below or (27). For clarity, we 
divide our discussion as follows. 

(a) Corresponding to the Cartan matrix element a, = 0 part (i.e. I j - il> 1): we still 
have that part of (1): 

which is equivalent to (27). 

analogue of (1) now takes the form 
(b) Corresponding to  the Cartan matrix element a,=-l part (i.e. lj-il= l ) ,  the 

(29) 

The constraints (20) erase the first and the third term, while the second term now has 
a vanishing coefficient (since w = -1 for our non-standard BGR). While these parts of 
the generalized Serre relations become empty, there is no internal inconsistency. 

(X?)2X?+, - ( 1 +  w)x'x:+,x: -xj+,(x:)2= 0 .  

On the other hand, (1) for the standard sl,(n) reads 

( x ~ ) ~ x : + l  - ( q +  q-')x:x:+,x'+ x,+,(x:)* = 0. (30) 
The reconciliation between (29) and (30) lies in the observation that our  non-standard 
BGR generates an algebra corresponding to the standard case of sl,(n) at least partially 
at q being root of unity. So in this case, one expects q +  q-' = 0, or q4 = 1. So (20) is 
not incompatible with the generalized Serre relations. 

The correct interpretation of the q-analogue Serre relations is thus as follows. 
(i) In theclassical limit q +  1, (30) is equivalent to the statement [z:, [r?:, 2:+,]] = 

(ii) In the q-analogue standard case, (30) is equivalent to (read r for 4): 
0, or 2a,+a,+, is not a root of the underlying Lie algebra. 

(iii) In the non-standard case, we have (see appendix, equations (Ala), (A13)), 

{z:, [P:, z:+,]}=O. (32) 

Equation (32) is equivaient io (29) by ( i i ) .  Aciuaiiy ihis is reduced io an identity 

We now attempt to give an interpretation of the algebra (21)-(27) in terms of the 
root vector language. For the standard sl,(n) algebra [2,3], the corresponding equation 
reads 

instead, the outside anticommutator: 

by (20). 

sc,x;x;' = q*wx;.  (33) 
Withtheusualnormalizationforsl(n), a B =  -1+38,,Ii-jlSl,we seethatfor i=j ,  

(21) is formally the same as (33) for the standard sl,(n) with q being replaced by A 
(root of unity) for the non-standard case. This feature is what we have found for the 
s1,(2) case [l]. For i  # j, only (24) and (25) have the form (33) except that our parameter 
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t in general is not a root of unity. On the other hand, (23) corresponds to a distorted 
value of R ~ ,  away from the canonical value of -1. 

In this language, we see that (21)-(24) amount to the following normalization: 

i =  I , .  . . , 4  (34) 

a,2=a3,=-2+ln t/lnA (35) 

a23 = -In t/ln A. (36) 

Here actually since our w = -1, A is essentially pure imaginary i (within a sign), so 
that In t/ln A = (2i/n) In 1. Equations (35), (36) imply that these scalar products are 
nowaltematinglydisplacedto-2+(Zi/?r) In t andto-(Zi/v) In t (whicharesymmetri- 
cally displaced from their normal value of -1).  This altemating feature is precisely 
reiaied io the way we choose or' in piace of the i's in the biocks A,,,, (recaii ihai 
we pick altemating odd blocks in (8)). 

This way of choosing our R,, implies that all our X; satisfy (20). Had we chosen 
a different R,,, say by modifying the AS block into A; also, the net effect would be 
as follows. 

(i) Not all (Xc)2 would vanish. Instead we would have (L&)2 = 0, (L;J2 = 0 instead 

(ii) While all the scalar products would have the same value (corresponding to 
(35)) equation (34) would break down. These features are less appealing than the one 
we have actually chosen. 

The considerations for the n = 5 case can he readily generalized to the general n case. 
(A) The standard BGR R is an  n2  x nz matrix which consists of ( 2 n  - I )  blocks of 

successive (increasing and then decreasing) m x m A,,, matrices whose structure is 
given in (5)-(7) [3,4]. For s l ( n ) ,  the largest block is n x n :  

(37) 

a.. = 2 

^* I r + \ 2 -  n I r + \ 2 -  cl 
U1 1-231 - W .  1-341 -". 

R=[Ai ,A2,  A,, . . . , A n - 1 ~ 4 ,  A - , ,  . . . , A ~ , A ~ , A I I .  

R,, = [a;, .A2, A;, . I ~, A;, : : I ,  A, ,  : : A; ,  : ~ ~, .Ai7 A ; 3  A:$ 

(B) The non-standard BGR R,,  is a slight distortion of R [13,14]: 

(38) 

We modify the 1 (to o t 2 )  contained in the centre of block A4k+3+A;k+3 for k =  
0, 1,. . . , [n/2] where [f] denotes the integer part of the fraction f: 

As discussed above, the choice of such a particular non-standard BGR R,, will 
result in the condition that 

I . - .  1 ,,n\ ('4) ( A k J  = U  K = L , L  ,..., i i - i .  1J71 
I "*\2 - n 

The rest of the algebra reads 

(B) .9CiX:xy' = A*'XF i =  1 , .  . . , n - 1 (40) 

where A = e-rrii2 =root of unity. 

(C) .9CjX:sC;' = (A-2t)'1/2X: i, j = 2 s -  1,2s (41) 
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(D) [x:,X,-]= ,3qT-’(x:-x;z). (43) 

(E) [x:,X;]=o I j - i l> l .  (44) 

As discussed above, equation (39) makes half of the generalized Serre relations (1) 
disappear from this algebra, while we still keep the other half in the form of (28) or (27). 

The interpretation of (41), (42) is an obvious generalization of that given above 
for the n = 5 case. 

In light of recent developments, quantum groups associated with the non-standard 
BGR have been studied by several other authors [ 16,171. For the spin-f s1,(2) representa- 
tion, Jing et al [ 121 discussed the resulting new algebra from the conventional approach. 
On the other hand, Liao and Song [17] discussed this from the viewpoint of the graded 
algebras, leading to their identification of sl , ( lI l ) .  

In this letter, our treatment for SI.( n) may be regraded as a generalization of that 
of Jing et al [12]. In the conventional approach, we find a new algebra. On the other 
hand, it is possible to give an alternate interpretation in the graded algebra in the spirit 
of Liao and Song [17]. Viewed in this light, our algebra for the rank-4 case can be 
recast in a form which can be identified as that of s1,(312). The basic ideas are as follows. 

(a) The non-standard BGR are obtained from the standard BGR by the replacement 
of q + - q - ’  in certain strategic places. (See e.g. (8).) By introducing a phase factor 
(or a metric tensor) ?I (which is a diagonal matrix with 1, except -1  at certain places), 
we can define a graded Yang-Baxter equation [18]. 

(b) In  our sl,(S) case (8) where we have replaced q by -q-’ (or in our notation 
I - t o t ’ ,  t = q - ’ )  in two places, the 25x25 1)-matrix has -1  in the 5th and the 21st 
places. The 1)-matrix will effectively compensate for the -1 (or w )  factor in the R 
matrix. Thus in (21), the A-factor is effectively absent. The vanishing of the square of 
X ,  in (20) is natural in the superalgebraic interpretation. Introduce three sets of boson 
operators ( b )  and two sets of fermion operators (a) such that our X :  are constructed 
from the products b:a, ,  bin,, bla , ,  b:a2, and our commuting K, operators are con- 
structed from the alternating b:b, and a:a,. Equation (21) with A gone implies that 
the difference of the number of bosons minus the fermions is a constant. Equation 
(23) with A gone becomes the bosonic part of s1,(3 12), and (24) becomes the fermionic 
part of s1,(312). Equation (26) becomes anticommutators. Equations (25) and (27) 
remain the same. Details will be given elsewhere [19]. 

From the non-standard BGR R,, for the fundamental representation of sl,(n), we 
have obtained the resulting algebra implied in the FRT approach. We have given a 
general treatment for the arbitrary n case, after having examined the n = 5 case in 
considerable detail. Unlike the simple s1,(2) case [ I ,  121, we encounter an (apparently 
new) algebra given by (38)-(44) which is a deformation of the standard algebra. We 
have attempted to give an interpretation in terms of the different scalar product 
normalization of the corresponding root vectors involved. We have also discussed the 
implications for the generalized Serre relations. 

The question of implementing this algebra into a Hopf algebra will be pursued 
elsewhere. 

We are deeply grateful to Professor C N Yang for his kind hospitality extended to  
us at the Institute for Theoretical Physics at Stony Brook and for many enlightening 
discussions and encouragements. We thank Professor H T Nieh for discussions. 
M L Ge wishes to thank Professors M Jimbo, V Korepin, H C Lee, N Reshetikhin, 
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L Takhtajan and Y S Wu for helpful discussions. M L G e  is supported in part by NSF 
Grant #PHY-89-08495 ITP at Stony Brook. 

Appendix. Algebraic detail for n =5 

We summarize here the results from equations (2), (3) and (8). The block diagonal 
structure of the 25 x 25 R,, of (8) is written in accordance with a specific labelling 
scheme. Thus, to bring the direct products L'OL' to conform to the same labelling 
scheme, certain permutations among the rows and columns are required. Explicitly, 
we rearrange the columns of the direct product in the following sequence: ( I ) ,  (2,6), 
(3,7, I I ) ,  (4,8,12,16), (5,9,13,17,21), (10,14,18,22), (15,19,23), (20,24), (25). In 
other words, the m x m  block collects the [ m , m + n - I ,  .... m+(n-l)(m-l)] th  
co!nmns ( I  s m .n) on !he way ep, then !he .E! x .E! b!a& co!!ec!s !he [ k , ~ ,  k~ + 
( n - I ) ,  . . . , kn+(n-l)(m-111th columns ( 2 s  k s n -  1 , l  S m G n -1) on the way 
down. Likewise for the reshufflings of the rows. 

We have (repeated indices are not summed): 
(1) Diagonal elements commute: 

[ L ; ,  L;] = 0 i, j = 1,. . . , n all * combinations. (AI) 
(2) Other vanishing commutators: 
(a) Between the diagonal and the off-diagonal elements: 

[ E ,  L:,l= 0 

[ G k ,  L 3  = 0 

[L; ,  L:l= 0 

[L,:, L,l = 0 

[ G k ,  &;I = 0 

[L,;, L,1= 0 

[L,,L:,I=O [L;, L61= 0 i < J  < k S n. 

(b) Among the off-diagonal elements (no indices in common): 

[ L b ,  LG] = 0 [ L i ,  L:,] = 0 

(3) Non-vanishing commutators (7 -  t - t - I ) :  
(a) No indices in common: 
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Equation (AS) gives the entries L: for j 3 i + 2 as commutators and iterated multiple 
commutators in ( IO)  and (1  1). 

(4) Vanishing squares: 

( LTi+,)2 = 0 (LT+, ; I 2=  0 i = 1, . . . , n. (A7) 

Equation (A7) gives (20). These are the independent requirements as aconsequence 

( LT<+,)2 = 0 (L,, J2 = 0 i s n - 3 .  (AS) 

Unlike (A7), however, (AS) are not independent relations. They actually are identities 
which can be seen to follow from (A7), the first equation of (AS) and (A12). 

of the suitably chosen R,, of (8). Furthermore, 

( 5 )  q-analogue commutators: 
(a) Between the diagonal and the off-diagonal: 

L;L+L;-' = c * l ~ +  L:L:L;-' = c;l~,; 'I 1 J ' I  I' 

where 

1 i =odd i < j s n  
'I L-l i =even i < j s n  

c.. = 

L?L?L?' = d?'L? 
J ' I U  ' I ' I  L;L,;L;-' = dT'L,; 

where 

j = even i < j S n  
'I [;-tl j = odd i < j S n .  

d . .  = 

(b) Among the off-diagonals: 

L; L; = rG& L; LrL,  J' = rGkL& 

where 

i =odd i < j < k s n  r '  . ~ -,-.. . ;<;/L,s" .J . I .  _.. (b.!!) I = ellan 
I . .  = 
ox <,.,*I-' 

llr0.l 

L;L& = S$~L;L; L& = SGkLGL*. 

where 

k =odd i < j < k s n  s.. = 
ux  I;w k =even i < j < k < n  (A12) 

L+L; 'I ,+I, . = p . ~ r  'I J+ l j  L+ 'I L,;L;+, = p,L;+,L,; 

where 

j = even i < j < n - l  
j = odd i < j c n - l  

Equations (21)-(26) follow from (A9), (A10) and (A2). It is interesting to note that 
(A9)-(A13) give the commutators and anticommutators in the limit f -f 1, o = -1. 

It can be verified that all the constraints stated here become identities as a con- 
sequence of the basis algebra given in (20)-(27). 
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